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The Haldane phase at finite temperatures: a defect approach 
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Maim, Federal Republic of Germany 
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Abstract Here we investigate a onedimensional, spin J = 1 Heisenberg antiferromagnet 
with exchange and single-ion anisotropy. A selfconsistent approach using defects, which 
wds recently proposed by G6mez-Santos, is applied to determine lhe phase diagram at 
T = 0 K and is generalized to finite temperatures The phase diagram for exchange 
anisotropy constant f 2 1 is in reasonable agreement with earlier numerical results; the 
three different phases (NCel, Haldane and large-0 phases) can be characterized by the 
defect Concentration. 

11 is shown that the ground state and the excitations are Ea-like. The Haldane phase 
can be interpreted as a BCS phase in particular, and the lowest excitations, as a break-up 
of ‘Cooper pairs’. T i e  specitk heat C exhibits a maximum. I t s  pasilion T., increases 
with increasing gap energy E,; below T,,, there exists a regime with linear temperature 
dependence. 

1. Introduction 

In 1983 Haldane [I] predicted that integral-spin antiferromagnetic Heisenberg spin 
chains have a finite gap Eb > 0, in contrast to half-integral spin chains, which are 
gapless. Haldane arrived at this result by mapping the Heisenberg antiferromagnet 
onto a nonlinear U model. Subsequently, the conjecture has been confirmed for 
different spin Hamiltonians, and rigorous proof was given for an isotropic Heisenberg 
model including a special type of biquadratic exchange [2]. A review summarizing the 
different models’and approaches, also including experimental confirmation [3], was 
recently given by AfReck [4]. 

In this paper we will consider a spin s = 1 Heisenberg ctiain with 
antiferromagnetic, anisotropic exchange interaction and crystal field anisotropy. The 
Hamiltonian is given as 

Botet el a1 [4] were the first to do a numerical investigation of this Hamiltonian in 
order to prove that the Haldane phase exists in a finite region of the ( E - - )  parameter 
space. Meanwhile, a unique phase diagram has emerged for the Hamiltonian ((1)) 
[5,6,7]. For E > 0, three different phases exist, i e. the N6el phase, the Haldane 
phase and the large-D phase, which can be distinguished by different types of order 
parameters [6]; moreover, the gap energy E vanishes on the boundaries between the 
Haldane phase and the other two phases. h i l e  most of these results are based on 
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numerical calculations for finite chains [5,6], an analytical approach by "saki [7] has 
yielded exact bounds for the phase boundaries -although within a restricted Hilbert 
space. 

G6me.z-Santas recently propased an attractive approach to model (equation (l)), 
with D = 0 and spin quantum number s = 1 [SI. Starting from the Nee1 
state, local defects with fermionic character were introduced, and the originat spin 
Hamiltonian was transformed to a fermion system with two-fermion interactions, 
whereby restricting the original Hilbert space to a subspace Hw Owing to the 
interactions, the fermion Hamiltonian cannot be treated exactly, hut a Hartree-Fock 
approximation finally led to the result in which there is a gap which just vanishes at 
E, x 1.125 (for D = 0) 191. An extension of subspace H ,  led to an improved value 
zc e 1.184, which compares very favorably with quantum Monte Carlo calculations 
(e. g. [SI). An outline of the defect method is given in the next section. 

There is not much work available on the temperature dependence of the Haldane 
phase and the phase diagram of Hamiltonian ((1)) in general. Recently, however, 
Delia el af [lo] calculated the 7'-dependence of the susceptibility for t = 1 and 
D > 0 within the Haldane phase, and these results are consistent with the existence 
of an energy gap. 

Numerical calculations [Il l  and experimental results [I21 for the magnetic part of 
the specific heat are available for spin s = 1 quantum chains; and in both cases 
a Schottky anomaly was found. The results attained by Moses er a1 [12] are also 
compatible with a linear T-dependence within a finite temperature range below T,,, 
the location of the Schottky anomaly. 

The purpose of this paper is twofold: 
(i) to investigate to what extent the description by defects is reasonable for D # 0, 

and in particular to check whether the phase diagram in (c - D) space can be 
reproduccd; 

(5) to extend the defect method to finite temperatures, in order to study the tem- 
perature dependence of the phase diagram, the gap energy, and the specific heat. 
Our paper is organized as follows: section 2 gives an outline of the defect method 

and its application to Hamiltonian ((1)). In section 3 we present our results; finally, 
section 4 contains a discussion of these results and some conclusions. 

H Kohler and R Schilling 

2. Defect approach 

Here we describe the defect pattern suggested by G6mez-Santos [SI, considering only 
s = 1. The perfect antifcrromagnctic order of the Ndel state in one dimension 

. , . T l T l T l T l  . . . 
is destroyed due to 'spin-zero defects' (SZD) 

... TlTlOTlT... , 
(a spin-zero defect is a localized defect at a site i is in the state with S i  = 0). Next, a 
restriction of the 3N-dimensional Hilbert space H, is introduced. Only the following 
local spin configurations are considered: 

I . .  . T l T l T l  . .  .) I .. . t l 0  T L T  . ..) 
41.. . T l  00 tl . . .) - A A . .  . T l l T T l  . . .) (2) 
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with X i  + = 1 (A, and A, are real). The latter superposition accounts for 
ferromagnetic correlations, provided A, # 1. Note that the nonzero spins adjacent 
to the SZD are always in antiferromagnetic order. It is aimed to describe the defects 
as fermions. Now, in order to derive an effective fermion Hamiltonian, the action of 
the various parts of (1) on the restricted set (2) of spin configurations is studied: 
(ij 2 - y part 

The 2 - y part can be rewritten as 

qs,ss;;, 2 + S;s:+,) (3) 

Its effects are threefold: 
Firsr, an sm is shifted by one lattice constant, e.g. 

... TI 0 T l T - t l T  0 I t . .  . . 
This hopping can be described by 

[1+ (A, - 1) (ni-1 + n;+z)]CIc;+l + HC (4) 

t where ni = c i c j  is the occupation operator at ith site; and c; and c; are fermion 
annihilation and creation operators. The second term in (4) considers two SZD which 
are next-nearest neighbours. 
Second, transitions are induced between the first and third state of (2): 

00 TI . . . ++ ... . TlTltl . . . . . . 
which can be represented as 

X,(cjcj,, + HC). (5)  

Thud, transitions arise between both states of the superposition (third state of (2)): 

..-T100Tl*TlltTl... 

which yields an effective contribution 

- 2X,Xzn;n;+,. (6) 

(ii) L - L part 
This part consists of at most the king part and the single-ion anisotropy, and it 
is reproduced by 

( 2 E  - D) (n; - 1) - (EX: - 2D2X2) nit,n; + c . (7) 

Summing up equations (4)-(7), we obtain the effective fermion Hamiltonian 
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where 
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6’ = 2A,A, + CA; -2DA:. (9) 
A comparison with the corresponding Hamiltonian obtained by G6mez-Santa 
shows that the single-ion anisotropy renormalizes both the coupling constant 8 
and the chemical potential of the defeas. Unfortunately, the partition function 
cannot be calculated exactly. Following [SI, a Hartree-Fock approximation(at finite 
temperature) 

n ; n j + , - t 2 n u n i - n l ( c f c , t l + ~ ~ ) + h l ( c f c ~ t l + ~ ~ )  +constant (10) 

is performed. All other terms including four fermi operators are handled similarly. 
The canonical averages: 

71. 2 = (c!c. t r t t  .)  hj = (c!cttj) (11) 
are determined in a self-consistent manner by using the Hanree-Foek Hamiltonian 
HHF. After a Fourier transformation, H,, takes the form 

where 8, (a = I, y, z) are the Pauli matrices, and 

A, = c 6 + ~ c o s ( q ) f w c o s ( 2 q )  
B, = ~ ’ s i n ( q )  + w‘sin(2q) 
U = 1 + cn, + 2(A, - 1)(nu- T I * )  

U’ = A, - €hI + 2(A1 - 1)h, 
w = -2n, (A, - 1) w’ = 2h, (A,  - 1) 
e s  = c - 1 D - no€‘ + 271, (A,  - 1) . 

The Hamiltonian ((12)) is bilinear, and it can always be diagonalized [13]. This can 
be achieved by a Bogoljubov transformation 

It is easy to verify that the new operators d, and db satisfy the fermion commutation 
relations. Angle 0, is determined such that the nondiagonal terms in the Hamiltonian 
(12) vanish, which yields 



The Haldane phase at finite temperatures: a defect approach 7903 

With this transformation, it follows that 

HHP = ~ E q d ~ d q  + U 
‘I 

where the ground-state energy is 

U = N [ D  + c, - E + E’ (n: - nt + h:) 

- 4(n”ni- ninz + h,h,) (A1 - I)] - 5 

E, = 2[(c, + U cos (4) + w cos (29))’ + (v’sin (n) + w’ sin (2q)) 2 ] 1f2 . 

Eq (19) 
‘I 

and the one-particle excitation energies are 

(20) 

E, is positive, and our numerical calculations show that the minimum excitation 
energy is taken either at the Brillouin center q = 0 or at its edge q = K. Using these 
results, the self-comktency equalions for nj and hj  become within the thermodynamic 
limit: 

(21) 
B P E  . . hj  = - ?r 1 dq $ tanh ( y) sin ( 3 4 )  j = 1,2 

U 

p = 

where A,, B, and E, depend on {nj}, { h j }  and A, (cf equation (14)). The reader 
should note that the number of fermions is not conserved, but that it varies with 
the temperature and the chemical potential of the defects. The five self-consistency 
equations (21) are solved numerically for k e d  A,, and A, is obtained by minimizing 
the free energy. 

3. Results 

The selfconsistency conditions (21) were solved numerically. One fixed point has 
been found only-that is to say, there is no phase transition with respect to the 
temperature, which is consistent with the one-dimensionality of our model. In the 
following, we will present the various physical quantities we have calculated from the 
solution of (21). 

3.1. Ground state energy 
Although the ground state energy U by itself is not of importance, its approximate 
value compared to direct numerical evaluation may already assess the quality of the 
approximations involved in our approach. 

Unfortunately, we have not found values for U except for U = -1.401 [14] at 
the isotropic point E = 1, D = 0, which is within 0.1% of the result obtained with 
the defect method (see also [SI). 
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3.2. Phase diagram 

More important is the phase diagram, which we explored for < 2 0 only. Negative 
values for c result in an instability of the numerical iteration of the self-consistency 
equations, which may be a hint that the defect method fails for c < 0. For 0 6 c < 1 
and D < 0, we obtained an additional phase boundary not found in earlier work [& 
71. In this range, A, differs significantly from unity, i.e. the ferromagnetic correlations 
are more important. These correlations were probably not taken into account well 
enough by the variational parameter A,. We therefore believe that the additional 
phase boundary that we found is an artifact. Consequently, only the results for e > 1 
will be presented. 

Since the gap energy Eb is the crucial quantity with respect to Haldane’s 
conjecture, it is shown in figure 1 for T = 0. A channel for large E and D exists, which 
bifurcates into a pair of channels for smaller c and D. Within these channels, Eg is 
singular. Locating these singularities, we obtain the phase diagram which is depicted 
in figure 2. In agreement with the currently available results, we find three phases: the 
Nbel, Haldane and large-D phases. At the phase boundaries between the Haldane 
phase and the other phases, E vanishes continuously, but with a discontinuity in its 
derivatives. Between the NCef phase and the large-D phase, E does not vanish, 
and it changes continuously. Our phase diagram (at T = O K )  is also consistent with 
the rigorous bounds derived by Thsaki [7] for a restricted Hilbert space; %saki has 
found that there is a NBel phase for D < e - 2 and a unique disordered ground 
state with exponential decay of the correlations (the Haldane and large-D phases) 
for D > $6 - 1. A comparison of the phase diagram for T = 0 and T = 2 (see 
figure 2) demonstrates that the quality of the phase diagram does not change at finite 
temperatures. With increasing temperature, the triple point is shifted to e = D = CO. 

H Kahler and R Schilling 

Figure 1. The gap energy 
Eg at T = 0 as a function 
of c and D. 

The following two figures, 3 and 4, show the T-dependence of the energy gap and 
of the defect concentration in the Haldane phase at the isotropic point, respectively. 
Qualitatively, the minimum in E&T) is in agreement with the experiment [16]. 
Moving the parameter D closer to the phase boundary between the Haldane and the 
large-D phase gives rise to a maximum in Es and no, in contrast to the isotropic 
point. In the NBel and large-D phase, nu increases and decreases monotonously. In 
both of these phases the energy gap decreases monotonously. 
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Flgure 2. The phase diagram in the ( c  - D )  
space for T = 0 (sotid line) and T = 2 

0 . 5  

0.46 - 

w 

0.3 
0 2 4 6 8 10 

T 

Flgurc 3. T-dependence of the energy 
gap in the Haldane phase for c = 1 and 
D = 0. 

Feure 4. T-dependence of the defect 
"envation "0 in the Haldane phase; 
parameters as in figure 3. 

An interesting criterion to distinguish the phases is the q-dependence of 0, shown 
in figure 5. In the Haldane phase we have A@ = 0, - 0, = K, and in the other 
two phases, A@ = 0. 

Since our approach describes the quantum chain in terms of defects, it is 
interesting to investigate nu as a function of E and D; the result is shown in figure 6. 
The Nee1 phase and the large-D phase correspond to the plateaus at, respectively, 
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Figure S. qdependence of lhe angle 0, for T = 0 
(dolled line), T = 2 (dashed line) and T = 10 
(solid line) [or L = 1; (0) D = -4 Nee1 phase, (b) 
D = -0 Haldane phase and (c) D = 4 large-D 

i 

ii 5 

0 phase. 
0 . 0.5 1 1.5 2 2 . 5  3 

no 2: 0 and no FS 1. The Haldane phase relates to the inclined part of the surface, 
where nu rises continuously from n FS 0 to no 2: 1. For larger values of c and D 
(above the triple point at f l  2: 3.5, D, FS 3.9,  this increase becomes more abrupt. 

The behaviour of no is completed by the (e - D)-dependence of n,, which is 
a measure of defect mobility. From the result (figure 7), it becomes obvious that 
the Hakiane phase exhibits maximum mobiliy, in contrast to the Nee1 and large-D 
phases, in which n, is rather small. 

3.3. Spin correlalions 

We have calculated the nearest and next-nearest neighbour spin correlation functions 
(SrSp) for Q = z(Ik - I1 = 1,2) and for a = z(1.k- 11 = 1). For instance, the 
z-r-correlations can be expressed via the defect concentration operators as 
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Flgure 6. e- and Ddepndence of the defect mneenlmlion no for (a) T = 0 and 
(b) T = 2. 

Figure 7. 6- and Ddependence of the 'mobility' nl for (0) T = 0 and (b) T = 1. 

nk- 1)exp in  C n, ( q - 1 )  (stsf) = (-l) l~-ll  
(( ( r<j<r ) ) (22) 

The factors (nk - 1) and (nr  - 1) take into account that S;S; vanishes, provided a 
defect sits at site k or 1. The exponential considers the number of defects between 
sites k and I, taking into account the sign of the correlation function. A similar 
representation is found for the z-z-correlations. Both types of correlations were 
determined within the mean field type of approximation we discussed in section 2 
[cf (IO)]. The results (depiaed in figures 8 and 9) are consistent with those of no 
and n1 (presented in figures 6 and 7). For example, the nearest neighbour L-Z-  

correlation (figure 8) is about -1 (corresponding to nu = 0) and 0 (corresponding 
to no = 1) in theNCel and large-D phases, respectively, whereas the Haldane phase 
corresponds to the inclined part of the surface. The next-nearest neighbour L--L 

correlation (figure 8(b) remains small in the large-D phase and converges to +1 in 
the NCel phase, elucidating the antiferromagnetic order in the latter phase. The I-I- 
correlation was calculated for nearest neighbours only. The result (figure 9) compares 
favorably with figure 7, since S,? S; also induces defect motion. 

3.4. Specific heat 

Using the Hartree-Fock approximation, it is straightfonuard to determine the internal 
energy, from which we obtain the specific heat C( 2') (for zero external field). The 
result is shown for different E and D = 0 (figure 10). A well-pronounced maximum 
(Schottky anomaly) exists, due to the existence of an energy gap at T = 0 K; 
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Figure S. L- and D- dependence of (S:+,Sf) for T = 0 (a) n = 1, (b )  n = 2. 

Figure 9. 6- and Ddependence of the nearest-neighbour spin correlation (S;,S:) for 
T = 0. 

its position is approximately proportional to e for E 2 2. For T -* 0, C ( T )  
vanishes exponentially if E (T = 0) > 0. The qualitative change for C ( T )  when 
the gap energy Eg(T = b)  decreases to zero is demomtrated in figure 11. At 
E,( T = 0) - 0 there is a crossover from exponential to power law decay. In case of 
E,( T = 0) = 0, we find from figure 11 that C( T) increases linearly with T. But it 
is also interesting that a linear behaviour exists over a finite T interval for finite gap 
energy E,( T = 0) > 0. 

4. Discussion and conclusions 

In this paper we have extended the defect pattern, as recently suggested by G6mez- 
Santos [8], to a s = 1 Heisenberg antiferromaget, including single-ion anisotropy, 
and to finite temperatures. 'Rvo main approximations are involved in this approach. 
First, the Hilbert space is restricted to spin configurations mainly containing zero- 
spin defects; the ferromagnetic nearest-neighbour correlations are only taken into 
a m u n t  by a variational method; the zero-spin defects are described as fermions. 
Second, the corresponding effective fermion Hamiltonian is treated in a H a r t r e e  
Fock approximation. 
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T 

Flgum 10. Specific heal C(T) for D = 0 and e = 1,2,3 and 4. 

1 10 

Figure 11. Double-logarithmic plot of C(T) as a function of T for D = 0 and L = 1 
(dotled curve), ec 1.184 (dashed cuwe) and 6 = 1.4 (solid curve). 

The e- D phase diagram is in good qualitative agreement with earlier results [4F 
[SI for e > 1. We found three different phases in particular, which can be identsed 
as the Nee], Haldane, and large-D phase. With the gap energy Eb as an order 
parameter, we found a second-order phase transition between all these phases. This 
does not imply that a first order transition may occur between the N6el and large-D 
phase if another order parameter is chosen (the string order parameter, e.g., exhibits 
a first-order phase transition [6]. Neglecting the x-y part of the Hamiltonian (I), it 
is easy to prove that the phase boundary between the Nee1 and large-D phases is 
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given by E = D, which is consistent with our result for E -t CO and D -t CO. We 
were also able to show that the gap energy Eb - E changes continuously, crossing the 
boundary e = D. 

The defect approach also allows identification of the three phases by the defect 
concentration nu and defect mobility n,. The Nee1 and large-D phases are well 
characterized by the asymptotic value no = 0 (as E -+ CO) and no = 1 (as D -+ CO), 
respectively. A smooth variation between no = 0 and no = 1 is typical for the 
Haldane phase (figure 6), a behaviour which is supported by the (e - D)-dependence 
of the defect mobility (figure 7). Since nu w 0 and nu x 1, the defect mobility is 
rather small in the Nkel and large-D phases - its maximum value comes within 
the Haldane phase. These observations are consistent with the behaviour of the spin 
correlation functions and can be interpreted within a sa-type description which, as 
far as we know, has not previously been noticed. 

In fact, the ground state of the HartreeFock Hamiltonian ((12)) for the spinless 
fermions is given by the sa- type state: 

H Kiihler and R Schilling 

with U, and U, from ((15)). Note that 10) is the true vacuum state, not the occupied 
Fermi sphere. The low-level excitations 

are related to the break-up of a ‘Cooper pair’ C~~C!,JO). The corresponding gap 
energy between the Haldane phase and the two other phases vanishes. 

Within the Ba-type description, the three phases can be characterized as follows. 
Xiking into account that 0, w 0 and 0, w ?r (cf figure 5(a)  and (c)), it follows from 
((16)) that lupl x 1, U, zz 0 and U, zz 0, lv,l x 1, respectively. Thus, at T = O K  
the Nkel phase (E + CO) does not contain ‘Cooper pairs’, whereas the large-D phase 
is a tensor product of N / 2  pair states. In contrast, the Huidane phase, for which 
0, changes from 0 to T (cf figure 5(b)), is characterized by uq # 0 and vs # 0 
(q 0, T ) ,  i.e. it is a Bn-phase of spinless fermions. This interpretation IS also 
supported by the (E - D)-dependence of h,  = & ~ , (cbc t , )  shown in figure 12. 

Finally, we comment on the temperature dependence of these results. The phase 
diagram does not depend qualitatively on the temperature. Its topology remains 
unchanged (cf figure 2). 

The T-dependent ‘renormalized’ gap energy Eg( T) exhibits a minimum at a 
temperature Tmin for the Haldane phase (figure 3(b)). For the other two phases, Eb 
is a monotonous function of T .  

The specilic heat C(T) obtained exhibited a Schottky anomaly (figure 10). The 
position of the isotropic point was T,,, w 1.02, which is about 10% above the result 
reported by de Neef elal, Campana ef ai  Ill] and Blbte [ll], but about a factor four 
too large compared to Weng ef ul [ll]. The value C,,, = C(T,,) deviates more 
strongly, e.g. our value of C,,, x 0.37 is about 40% too small when compared with 
Blote’s result [ll],  and even smaller than those of Weng et a1 and de Neef el a1 1111. 
Tho reason for this discrepancy of C,, values is probably explained by our restriction 
of the Hilbert space which leads to underestimation of C,,,. 
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Figare 12. e- and Ddependence of hl for T = 0. 

Choosing E and D at zero-temperature phase boundary ( T  = 0) between the 
Haldane phase and both other phases, C ( T )  exibits a linear dependence up to 
T = O K .  Within the Haldane phase, a finite regime above T = O K  but below T,, 
remains with a linear T-dependence (cf figure ll), which is in agreement with the 
results of Moses et a1 [U]. The double logarithmic plot for C(T) (figure 11) also 
reveals a bend at a temperature T FC 0.5, where the defect concentration and the 
gap energy develop an extremum. It is not obvious whether this particular type of 
T-dependence of E ( T )  and C( T )  for the Haldane phase is genuine or a result of 
our approximations4 would be important to clarify this point by further experimental 
and theoretical investigations. 

To summarize, we have demonstrated that the defect method for the Hamiltonian 
(1) leads to a qualitatively correct phase diagram, the topology of which does not 
change with temperature. It was shown that the Haldane phase can be interpreted as 
a BCS-State of spinless fermions and the excitations as a break-up of 'Cooper pairs'. 
The specific heat is in good agreement with earlier results. It exhibits a linear part 
and a bend for T < T,,,. This bending point is in correspondence with a minimum 
in E,(T). 

4 

Note added in p m f  After submission of this manuscript, a paper by Mikeska [15] has appeared with a 
similar analysis of the defect approach hut only for T = 0. 
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